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ABSTRACT. The culture of summer squash (Cucurbita pepo) has great 

socioeconomic importance worldwide. Characterization of C. pepo 

germplasm has been predominantly performed by field evaluations, 

which is very time consuming. Thus, the validation of new techniques 

capable of optimizing time for the field germplasm selection process 

would be useful. We evaluated agronomic potential and genetic 

dissimilarity of C. pepo germplasm and gathered data to determine 

whether aerial images obtained by drone imaging could assist in the 

selection of vegetative vigor; this is the first such analysis for this crop. 

Sixty-five genotypes belonging to the vegetable germplasm bank of the 

Federal University of Uberlândia were evaluated, with three replications 
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in a randomized block design. The variables evaluated were: production 

per plant, number of fruits per plant, leaf temperature, precocity, and the 

indexes SPAD (Soil Plant Analysis Development), LAI (Leaf Area 

Index), NDVI (Normalized Difference Vegetation Index) and NDRE 

(Normalized Difference Red Edge Index) the last three variables were 

obtained using drone imaging. Genetic divergence analysis was 

performed with multivariate techniques using generalized Mahalanobis 

distance and UPGMA clustering. Hybrid performance was compared by 

the Scott-Knott test. UPGMA clustering showed considerable genetic 

diversity, with the formation of 12 distinct groups. The largest relative 

contribution was from the leaf area index in the discrimination of the 

genotypes, demonstrating high efficiency in the validation of the image 

phenotyping technique. Eight genotypes stood out for yield, fruit 

number, precocity and high leaf area index, NDVI and NDRE values. 

The use of image phenotyping using NDVI and NDRE sensors was 

efficient to identify C. pepo genotypes that differed in plant vigor. 

 
Key words: Geotechnology; Genetic dissimilarity; Drone; Leaf area index; 

NDVI; NDRE 

INTRODUCTION 
 
Summer squash (Cucurbita pepo) is a vegetable of great socioeconomic importance, 

especially for family farmers in developing countries. It belongs to the Cucurbitaceae family, 

which has wide genetic variability, composed of more than 80 genera and 800 plant species 

(Formisano et al., 2012). 

Due to the expansion of the hybrid seed market and the demand for new hybrids 

(ABCSEM, 2014), there is a need to optimize the selection process in C. pepo germplasm. One 

of the limitations for advancing research is related to the considerable time needed to select high 

vigor plants in the field. The use of optical sensors has been reported to be effective for 

germplasm evaluation in several plant species. These sensors can cover a large field in a very 

short time, providing a quick assessment of all plots. Thus, this method has the potential to 

improve standard classification methods, which are extremely useful in plant breeding 

(Haghighattalab et al., 2016). 

Aerial platforms with adequately equipped portable multispectral sensors can critically 

aid in evaluating the yield potential of new lines and for quantification of large field plots, which 

is more difficult and time consuming with ground-based physical assessments (Sankaran et al., 

2015). These aerial platforms have shown to be a potential alternative given their low cost of 

operation for environmental monitoring, high spatial and temporal resolution, and their high 

flexibility in image acquisition programming (Zhang and Kovacs, 2012). 

Contemporary studies have correlated vegetation reflectance with agronomic 

characteristics in several species: Risso et al. (2012) for soybeans; Vicente et al. (2012) for sugar 

cane; Haghighattalabet al. (2016) for wheat; Makanza et al. (2018) for maize; and Maciel et al. 

(2019) for lettuce. Studies on olericulture species are scarce and there are no studies correlating 

these multispectral indices for C. pepo. For this species, some of the main characteristics to be 

evaluated in the field include plant vigor and vegetative growth (Strassburger et al., 2011). 
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We evaluated the agronomic potential of summer squash genotypes to validate the use 

of aerial images obtained with a drone for measuring vegetative vigor, to determine whether 

analysis of aerial images can contribute to the evaluation of genotypes. 

MATERIAL AND METHODS 
 
The experiment was conducted in the city of Monte Carmelo, Brazil (18º42'43.9” S; 

47º29'55.8” W; 873 m altitude) from August to December 2018, in a randomized block design 

with three blocks. The genotypes were originally obtained from vegetable markets. From 2013, 

five successive self-fertilizations were performed after hybridization between the accesses 

“UFU-A”, “UFU-B”, “UFU-C”, “UFU-D”, “UFU-E”, “UFU-F” and "UFU-G". The method of 

genetic improvement used was genealogical. Sixty-five C. pepo genotypes were obtained (Table 

1). These genotypes belong to the vegetable germplasm bank of the Federal University of 

Uberlândia. 

 
 

Table 1. Cucurbita pepo genotypes obtained after five self-fertilizations and evaluated in a field 
experiment. 

 

Number Genotype Number Genotype 

3 UFU 1#1 38 UFU 77#1 
4 UFU 2#1 39 UFU 78#1 
5 UFU 3#1 40 UFU 79#1 
7 UFU 10#1 41 UFU 83#1 
8 UFU 11#1 42 UFU 85#1 

9 UFU 12#1 43 UFU 87#1 
10 UFU16#1 44 UFU 88#1 
11 UFU 17#1 45 UFU 89#1 
12 UFU 19#3 46 UFU 90#1 
13 UFU 20#2 47 UFU 93#1 
14 UFU 24#1 48 UFU 94#1 
15 UFU 28#1 49 UFU 95#1 
16 UFU 29#1 50 UFU 96#2 
17 UFU 30#1 51 UFU 97#2 

18 UFU 32#1 52 UFU 99#1 
19 UFU 33#2 53 UFU 102#1 
20 UFU 36#2 54 UFU 104#1 
21 UFU 41#2 55 UFU 105#1 
22 UFU 42#1 56 UFU 110#1 
23 UFU 43#1 57 UFU 111#1 
25 UFU 46#1 58 UFU 118#1 
26 UFU 47#2 59 UFU 121#1 

27 UFU 54#2 60 UFU 124#1 
28 UFU 55#1 61 UFU 65#1 
29 UFU 59#2 62 UFU 115#1 
30 UFU 60#3 63 Tronco caserta 
31 UFU 62#1 64 UFU-E 
32 UFU 67#2 65 UFU-B 
33 UFU 68#1 66 UFU-C 
34 UFU 69#1 67 PX13067051 

35 UFU 71#2 68 UFU-G 
36 UFU 72#2 69 UFU-A 
37 UFU 76#1   

 

The soil was sampled at a depth of 0 to 20 cm, and samples were analyzed for 
chemical and physical properties, presenting the following characteristics: clayey texture 
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containing more than 50% of clay in its composition; pH in CaCl2 = 4.9; OM = 3.9 dag.kg
-1

; 
Pmeh = 79.1 mg.dm

-3
; K = 0.29 cmol.dm

-3
; Ca = 3.3 cmol.dm

-3
; Mg = 1.3 cmol.dm

-3
; H + 

Al = 4.9 cmol.dm
-3

; SB = 4.90 cmol.dm
-3

; T = 9.80 cmol.dm
-3

; and V% = 50. Given the soil 

analysis, the calculation of planting and mulching fertilizers was performed, as well as 
liming, as required by the summer squash crop. 

Sowing was performed in 128-cell polystyrene trays with commercial coconut fiber 

substrate on October 6, 2018 in a greenhouse, and transplanted to the field 14 days after 
sowing in a randomized block design (RBD). The 65 genotypes were planted in three 
blocks with four plants per plot, totaling 780 plants, spaced 0.7 m between plants and 1.2 m 

between rows, with an area of 3.36 m² per plot and a total area of 655.2 m². 
Weed management and pest and disease control were carried out by weekly 

monitoring, through chemical control. Irrigation was performed at a frequency of 
application according to the need of the plants with a sprinkler irrigation system, avoiding 
the permanent wilting point. 

According to the climate classification of Köppen and Geiger (1939), the local 
climate is Aw (tropical savanna). During the experiment, the average temperature was 
23.38°C, relative humidity was 81% and cumulative precipitation was 745.4 mm (Figure 1). 

 

 
 

Figure 1. A) Minimum, maximum and average temperatures in the experimental plot region; B) Rainfall and 
relative humidity in Monte Carmelo, from October 5 to December 23, 2018.  
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The following characteristics were evaluated during the flowering / fruiting stage: 
SPAD (Soil Plant Analysis Development) Index: measured during the 

flowering/fruiting phase with the aid of a Minolta SPAD-502 CFL1030 model chlorophyll 

meter. It has an accuracy of ± 1.0 SPAD unit (for values between 0.0 and 50.0 at normal 
temperature/humidity). The center of the third expanded leaf, between 7:00 and 9:00 am, 
was sampled from four plants per plot, thus obtaining the average of the plot. 

Leaf temperature (ºC): measured with an infrared thermometer (model 4000, 4GL, 
Everest Interscience, Tucson, AZ, USA), which has an accuracy of ± 0.3°C at temperatures 
of -10 to 50°C. The upper leaves were sampled trying to point the sensor in the central 

position of the leaf surface in the third expanded leaf. 
During the harvest period (when the fruits were fully expanded), the following were 

evaluated: Production (kg.plant
-1

); Number of fruits (fruits.plant
-1

);  
 Precocity: number of days to start the production cycle from field transplantation. 
Leaf Area Index (LAI) (m²m

-2
) was measured with an unmanned aerial vehicle 

(Phantom4 Pro
©
 DJI) to capture images at the field test points on November 23, 2018. 

Flight plans were planned and conducted using the DroneDeploy
©

 application at a flight 
height of 50 m with a flight speed of 3 ms

-2
 overlaying 173 photos using a 20-megapixel 

resolution visible camera and a 12-megapixel near infrared camera (MAPIR- Peau 
Productions, Inc). Using these images, two orthophotos of the area of the experiment was 

generated with the program Pix4d
©

, one with the images taken with the visible light camera 
with GSD (Ground Sample Distance) of 1 cm (resolution per pixel), and the other with the 
infrared images with GSD 5 cm. The leaf area index was obtained by the ratio between leaf 

area (m²) and plot area (m²). The area was obtained using the infrared orthophoto and 
subsequently calculated using Image J

©
 software by quantifying the pixels in the image (1 

pixel = 1cm²). 

At the end of the production cycle (beginning of leaf senescence), we evaluated: 
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red 

Edge Index (NDRE): A second flight was made in the final phase of the experiment 

(12/22/2018), replacing the MAPIR chamber with a multi-spectral chamber (Micasense) 
Red Edge-M (Seattle, USA), coupled with a 3D kit developed by Sky Flight Robotics

©
 

(Michigan, USA). The camera captures five images of the same resolution (1280 × 800) for 
five bands: 475 nm for Blue with 20 nm calculated bandwidth, maximum average 
bandwidth of 560 nm, band 560 nm for Green with 20 nm bandwidth, band 668 nm for 10 

nm bandwidth Red, band 840 nm 40 nm band Infrared (NIR) and band 717 nm for 10 nm 
band Red Edge. Radiometric calibration of the images was performed by capturing images 
from a reflectance panel calibrated at 1 m height immediately before and after the flight. 

The camera captured the images on a digital memory card in 16-bit.tif format files. After 
capturing the images using UAV and the RedEdge camera, the images were processed using 

AgisoftPhotoScan software (www.agisoft.com) to obtain the mosaic. The NDVI and NDRE 
indexes of each plot were calculated using software that generates the results in the SOLVI 
cloud (solvi.nu). 

The Normalized Difference Vegetation Index (NDVI, Equation (1)) was calculated 
from the difference and sum of the red band and NIR band reflectance values of the 
orthomosaic generated using the MicasenseRed Edge camera. 

 

𝑁𝐷𝑉𝐼 =
(NIR−RED )

(NIR +RED )
                                                 (Eq. 1) 
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The Border Red Normalized Difference Vegetation Index (NDRE, Equation (2)) was 

calculated from the difference and sum of the reflectance values of the near infrared band (NIR) 

and the red-edge band of the orthomosaic generated using the Micasense Red Edge camera. 
 

𝑁𝐷𝑅𝐸 =
(NIR−Red  Edge )

(NIR +Red  Edge )
                                                 (Eq. 2) 

 

An NDVI threshold between 0.45 and 0.96 was used to capture green leaf reflectance 

and to exclude ground background reflectance. For NDRE the threshold was from 0.13 to 0.33. 

The assumptions tests of Kolmogorov-Smirnov, Bartlett and Additivity of the Blocks 

were used. The data were then subjected to analysis of variance by the F test. The means were 

compared by the Scott-Knott test. The variables were correlated with each other using Pearson's 

correlation. These analyses were performed using R software (R development core team, 2019). 

Then, multivariate analyzes were performed to determine the genetic dissimilarity 

between the genotypes, obtaining the dissimilarity matrix by the generalized Mahalanobis 

distance (Dii´
2 ). Genetic divergence was represented by a dendrogram obtained by the 

hierarchical Unweighted Pair-Group Method using Arithmetic Averages (UPGMA). Cluster 

validation by the UPGMA method was determined by the cophenetic correlation coefficient 

(CCC), calculated by the Mantel test (1967). The relative contribution of characters to 

divergence was calculated by the criteria of Singh (1981). All data obtained were analyzed using 

Genes software (Cruz 2013). 

RESULTS 
 
Based on the Scott-Knott test, all variables were significant, except leaf temperature 

(Table 2). 

Nineteen genotypes had the highest leaf area indexes. In relation to precocity, 43 

genotypes started fruiting first. Obtaining early cycles is an important feature for Brazilian 

producers in cold regions (South and Southeast) to avoid frost losses and in dry regions 

(Midwest and Northeast) to escape droughts. Precocity is also related to faster harvests, lower 

plant vulnerability in the field to biotic and abiotic stresses, and lower costs for irrigation, 

fertilization and other inputs. 

For the SPAD index 37 genotypes had the highest values. Several studies have shown 

the efficiency of the SPAD index as an alternative to measure levels of chlorophyll in leaves 

(Klooster et al., 2012). Porto et al. (2011) evaluated the SPAD index in C. pepo cv. “Caserta”, 

with increasing doses of nitrogen using the SPAD-502 portable chlorophyll meter (Minolta 

Camera Co. Ltda.). Five measurements of the SPAD index per leaf were made in the central 

region of the leaf blade of each plant in the useful plot, totaling 30 measurements per plot in 

each treatment, using the average to represent the treatments. Estimated critical level values for 

the SPAD index were 55.62 SPAD units. The critical SPAD index level obtained for the summer 

squash crop was close to the range of critical SPAD index levels (associated with maximum 

yield) reported by Swiader and Moore (2002) for the same crop. These authors found values of 

56.7 and 59.0 units determined in newly expanded leaves during the anthesis phase, in rainfed 

crops and under irrigation, in experiments conducted in Urbana, Illinois, United States. In our 

study, this index ranged from 46.4 to 95.01, with an average of 70.79, which is higher than 

found by Swiader and Moore (2002). 
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Table 2.  Leaf Area Index (LAI), Precocity (PREC), SPAD Index (SPAD), Production per plant (PROD), No. of 

fruits per Plant (NF), Leaf Temperature (LT), Normalized Difference Vegetation Index (NDVI) and Border Red 
Normalized Difference Vegetation Index (NDRE) in summer squash. 

 

Genotype code LAI (m2.m-2) PREC (days) SPAD PROD (kg) NF LT (°C) NDVI  NDRE 

3 0.26 B 30.00 C 65.1 B 2.03 A 5.70 A 23.7ns  0.27 B  0.09 A 

4 0.28 B 31.00 C 72.8 A 0.86 B 3.33 A 24.3ns  0.30 A 0.09 A 
5 0.24 B 37.67 B 92.8 A 0.64 B 2.63 B 25.3ns  0.16 B   0.04 B 

7 0.22 B 35.00 C 81.4 A 0.82 B 2.72 B 24.8ns  0.27 B  0.09 A 
8 0.39 A 32.33 C 87.6 A 1.21 A 3.08 A 24.2ns  0.39 A 0.13 A 

9 0.26 B 37.00 B 48.1 B 0.47 B 1.58 B 24.0ns  0.24 B  0.05 B 
10 0.50 A 31.00 C 73.8 A 0.64 B 1.67 B 23.2ns  0.30 A 0.07 B 

11 0.28 B 38.67 B 46.1 B 1.18 A 4.08 A 23.9ns  0.22 B  0.06 B 
12 0.21 B 34.00 C 53.0 B 0.81 B 2.72 B 25.6ns  0.18 B  0.05 B 

13 0.45 A 32.33 C 49.1 B 1.44 A 3.58 A 24.6ns  0.17 B  0.05 B 
14 0.30 B 31.00 C 75.4 A 0.98 B 2.50 B 22.7ns  0.27 B  0.07 B 

15 0.31 B 36.00 B 82.4 A 0.93 B 2.58 B 24.8ns  0.19 B  0.05 B 
16 0.26 B 35.00 C 67.9 B 1.09 B 2.30 B 24.8ns  0.35 A  0.09 A 

17 0.20 B 29.00 C 61.3 B 1.13 A 4.13 A 25.7ns  0.18 B  0.06 B 
18 0.19 B 37.00 B 91.4 A 0.59 B 1.25 B 27.6ns  0.24 B  0.06 B 

19 0.31 B 33.00 C 58.2 B 0.84 B 2.42 B 25.0ns  0.24 B  0.07 B 
20 0.29 B 42.33 A 84.4 A 1.44 A 3.75 A 23.0ns  0.34 A  0.11 A 

21 0.46A 35.00 C 62.8 B 0.89 B 2.42 B 23.4ns  0.26 B  0.05 B 
22 0.21 B 34.67 C 71.5 A 0.74 B 2.75 B 25.0ns  0.24 B  0.08 A 

23 0.28 B 29.00 C 71.3 A 0.77 B 2.56 B 27.5ns  0.24 B  0.04 B 
25 0.38 A 34.33 C 64.7 B 0.79 B 2.00 B 28.9ns  0.37 A  0.12 A 

26 0.28 B 43.67 A 55.8 B 0.53 B 2.64 B 23.5ns  0.35 A  0.08 B 

27 0.37 A 36.33 B 53.0 B 1.40 A 2.17 B 26.5ns  0.33 A  0.08 A 

28 0.34 B 38.67 B 71.9 A 1.04 B 2.58 B 26.2ns  0.35 A  0.09 A 
29 0.33 B 33.00 C 93.9 A 0.69 B 3.17 A 27.4ns  0.35 A  0.11 A 

30 0.29 B 28.00 C 88.1 A 0.73 B 2.58 B 25.5ns  0.40 A  0.13 A 
31 0.32 B 32.33 C 76.8 A 1.13 A 3.25 A 25.3ns  0.37 A  0.11 A 

32 0.24 B 33.00 C 66.2 B 0.55 B 2.33 B 24.8ns  0.29 A  0.09 A 
33 0.26 B 36.33 B 47.9 B 0.68 B 1.72 B 25.6ns  0.25 B  0.09 A 

34 0.35 B 33.67 C 83.7 A 1.74 A 4.83 A 26.1 ns  0.33 A 0.07 B 
35 0.22 B 35.00 C 76.3 A 0.57 B 1.83 B 25.0ns  0.19 B  0.04 B 

36 0.32 B 31.00 C 55.6 B 0.85 B 1.75 B 29.5ns  0.19 B  0.05 B 
37 0.25 B 31.00 C 76.6 A 1.01 B 3.42 A 24.4ns  0.28 B  0.07 B 

38 0.33B 31.00 C 74.8 A 1.35 A 3.08 A 24.8ns  0.35 A  0.10 A 
39 0.39 A 31.00 C 53.8 B 1.38 A 3.92 A 24.2ns  0.31 A  0.08 A 

40 0.30 B 29.00 C 60.6 B 1.31 A 3.92 A 27.8ns  0.29 A 0.07 B 

41 0.23 B 34.33 C 62.3 B 0.92 B 2.00 B 23.4ns  0.20 B  0.05 B 
42 0.38 A 35.00 C 76.3 A 1.25 A 3.67 A 23.0ns  0.45 A  0.16 A 

43 0.39 A 36.67 B 76.9 A 0.83 B 2.00 B 23.9ns  0.34 A  0.07 B 
44 0.26 B 49.00 A 80.2 A 0.35 B 1.50 B 27.1ns  0.28 B  0.09 A 

45 0.18 B 32.00 C 58.0 B 0.45 B 1.58 B 28.1ns  0.26 B  0.06 B 
46 0.27 B 35.00 C 72.7 A 0.73 B 1.75 B 27.3ns  0.27 B  0.08 B 

47 0.24 B 37.00 B 58.1 B 0.37 B 1.47 B 25.0ns  0.32 A 0.04 B 
48 0.26 B 36.67 B 78.2 A 0.60 B 2.39 B 24.8ns  0.27 B  0.08 A 

49 0.24 B 37.00 B 73.3 A 0.66 B 1.17 B 26.2ns  0.16 B   0.03 B 
50 0.17 B 37.00 B 49.2 B 0.33 B 1.08 B 28.2ns  0.23 B  0.05 B 

51 0.31 B 33.00 C 69.8 A 1.07 B 2.50 B 26.7ns  0.33 A  0.09 A 
52 0.26 B 33.00 C 69.9 A 1.95 A 3.92 A 26.6ns  0.17 B  0.03 B 

53 0.30 B 31.00 C 86.2 A 1.59 A 4.58 A 24.5ns  0.21 B  0.04 B 
54 0.33 B 43.33 A 61.8 B 0.66 B 1.75 B 22.6ns  0.31 A  0.08 A 

55 0.45 A 43.33 A 79.9 A 0.42 B 1.75 B 25.8ns  0.36 A  0.10 A 
56 0.28 B 38.67 B 78.7 A 1.07 B 3.17 A 25.1ns  0.26 B  0.07 B 

57 0.46 A 34.33 C 55.5 B 1.05 B 2.50 B 24.7ns  0.30 A  0.10 A 
58 0.28 B 28.00 C 63.7 B 0.93 B 3.42 A 24.1ns  0.23 B  0.05 B 

59 0.29 B 33.00 C 83.5 A 0.17 B 0.92 B 27.4ns  0.26 B  0.06 B 
60 0.39 A 36.33 B 64.6 B 0.77 B 2.42 B 24.0ns  0.33 A  0.08 A 

61 0.30 B 47.00 A 67,0 B 0.64 B 1.17 B 26.4ns  0.36 A  0.09 A 
62 0.30 B 33.00 C 73.1 A 0.64 B 2.50 B 24.2ns  0.19 B  0.06 B 

63 0.43A 30.00 C 58.0 B 1.34 A 2.92 B 26.1ns  0.24 B  0.06 B 
64 0.55 A 34.33 C 82.9 A 1.43 A 4.11 A 25.1ns  0.33 A  0.11 A 

65 0.51 A 28.00 C 67.2 B 2.37 A 4.25 A 24.0ns  0.44 A  0.13 A 
66 0.50 A 31.00 C 86.7 A 1.65 A 3.25 A 24.8ns  0.38 A  0.12 A 

67 0.37 A 29.00 C 85.3 A 1.47 A 3.67 A 22.8ns  0.32 A  0.08 A 
68 0.46 A 33.00 C 91.6 A 1.29 A 3.50 A 24.7ns  0.45 A  0.13 A 

69 0.41 A 32.00 C 95.0 A 1.26 A 2.25 B 24.5ns  0.40 A  0.11 A 

Kolmogorov-
Smirnov 

0.371 0.009ns 0.641 0.019 ns 0.457 0.371 0.09 0.03 ns 

Bartlett 0.30 0.00 ns 0.56 0.104 0.1389 0.28 0.15 0.80 

Block Additivity 0.13 0.11 0.12 0.0006ns 0.02 ns 0.45 0.22 0.03 ns 

* Means followed by distinct letters in the columns do not differ statistically from each other, by the Scott-knott test, at 0.05 significance. 

ns = Not significant 
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For production per plant (kg), 22 genotypes obtained the highest production. 
Regarding the number of fruits per plant, the highest numbers were found for 24 genotypes. 
For leaf temperature, no significant difference was found between the evaluated genotypes 

(Table 2).  
Regarding the NDVI index, 32 genotypes obtained the highest indexes. For the 

NDRE index, 31 genotypes obtained the highest indexes. NDVI values ranged from 0.16 to 

0.45, with a mean value of 0.29. NDRE values ranged from 0.03 to 0.16, with a mean value 
of 0.08 (Table 2). 

The genotypes that presented high production per plant, number of fruits per Plant, 

early cycles, high leaf area index, NDVI and NDRE were Abobrinha 11#1 (8), Abobrinha 
78#1 (39), Abobrinha 85#1 (42), UFU-E (64), UFU-B (65), UFU-C (66), PX13067051 (67) 

and UFU-G (68) (Table 2). 
The development of more productive genotypes in future breeding programs 

depends on the genetic variability available in germplasm banks (Koundinya et al. 2013). In 

our study, in the genetic diversity dendrogram (Figure 2), the genotypes were grouped 
according to the mean group linkage (UPGMA) method. For this, the cophenetic correlation 
value (CCC) was 63% (p = 0.01), indicating validation of the clustering method. 

 

 
Figure 2. Illustrative dendrogram of the analysis of 65 Cucurbita pepo genotypes by the mean group bonding 

method (UPGMA) obtained with the generalized Mahalanobis distance (Dií
2 ). 
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Separation of the groups was obtained by delimiting a cutoff line considering 60% 
of dissimilarity between the genotypes. The cut-off line was established wherever abrupt 
changes in the branches in the dendrogram were observed (Cruz et al., 2012). Based on this 

cutoff (dashed line in Figure 2) the genotypes constituted 12 distinct groups. 
The first group consisted of approximately 54% of the genotypes, including 

commercial genotype “PX13067051”. The second group consisted of approximately 6% of 

the genotypes. The third group consisted of approximately 3% of the genotypes. The fifth 
group consisted of approximately 11% of the genotypes including the commercial genotype 
“Tronco caserta”. The seventh group consisted of approximately 5% of the genotypes. The 

eighth group consisted of approximately 8% of the genotypes. The eleventh group consisted 
of 6% of the genotypes. The fourth, sixth, ninth, tenth and twelfth groups are each 

composed of a single genotype. 
Based on the criteria proposed by Singh (1981), it was observed that the most 

important characteristics for genotype discrimination in decreasing order were: Leaf Area 

Index, Precocity, NDRE, Production per Plant, Number of fruits per Plant, SPAD Index, 
NDVI and Leaf Temperature (Table 3). 

 
 

Table 3. Relative contribution of the evaluated characteristics of summer squash to divergence using the 
Singh (1981) criteria. 

 

Character S.J S.J(%) 

Precocity 03651.04 009.46 
Production per Plant 03078.12 007.98 
Number of fruits per Plant 02954.85 007.66 
Leaf Area Index 19170.55 049.70 
SPAD Index 02786.00 007.22 

Leaf temperature 01503.61 003.90 
NDVI 01835.56 004.76 
NDRE 03596.64 009.32 

Total 38576.36 100.00 

Normalized Difference Vegetation Index (NDVI); Border Red Normalized Difference Vegetation Index (NDRE). 

 

The largest relative contribution refers to the leaf area index in the discrimination of 
the evaluated genotypes. This demonstrates the great importance of field evaluation of this 
trait for future breeding programs. This fact shows the usefulness of images obtained by 

drones, saving time and labor in obtaining these data. 
The leaf area index (LAI) was positively correlated with yield and number of fruits 

per plant (Table 4), extremely relevant characteristics in summer squash breeding. The 

NDVI and NDRE vegetation index are well correlated with the LAI. These indexes are 
sensitive to canopy changes when the LAI is low (i.e. during the early stage), with the 

signal becoming saturated when the crop canopy closes (Inman et al. 2008; Marti et al. 
2007). 

The correlation between leaf area index and Production per plant, number of fruits 

per plant, NDVI and NDRE demonstrates the importance of image selection (Table 4). The 
NDVI and NDRE indexes showed a high positive correlation (Table 4). 

The RGB orthomosaic and the Infrared orthomosaic (first flight) can be viewed in 

Figure 3.  
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Table 4. Pearson correlation coefficients between the evaluated characters in summer squash: Leaf Area 

Index (LAI), Precocity (PREC), SPAD Index (SPAD), Production per plant (PROD), No. of fruits per Plant 

(NF), Leaf Temperature (LT), Normalized Difference Vegetation Index (NDVI) and Border Red 
Normalized Difference Vegetation Index (NDRE). 

 

 PROD NF LT LAI PREC SPAD NDVI NDRE 

PROD 1 0.86 -0.06 -0.54 -0.39 -0.19 -0.32 -0.40 
NF  1 -0.11 -0.45 -0.43 -0.22 -0.26 -0.36 
TF   -1 -0.05 -0.02 -0.20 -0.03 -0.01 
LAI    -1 -0.29 -0.22 -0.58 -0.60 

PREC     1 -0.17 -0.12 -0.15 
SPAD      -1 -0.23 -0.26 
NDVI       -1 -0.86 
NDRE        -1 

 

 
Figure 3. RGB (visible spectrum) orthomosaic of the experiment (left) and Infrared orthomosaic (right) of the 

summer squash plants. 

 
For the second flight the images obtained and processed for NDVI and NDRE 

estimates are given in Figure 4. 

In the images obtained in the second flight (end of the production cycle), it is still 
possible to make a differentiation of genotypes, even with the progression of leaf 

senescence (Figure 4). Genotypes 8, 25, 27, 39, 42, 55, 57, 60, 64, 65, 66, 67, 68 and 69 
obtained high LAI values and high NDVI and NDRE values on the second flight image. 

By analyzing Figure 5, the NDVI and NDRE spectrum image shows that there is 

coherence between the results obtained by the sensors when compared to the RGB image. It 
shows the difference between genotypes 38, 68 and 64 in the visible spectrum (RGB).  

These differences are accentuated when the NDVI and NDRE indexes are calculated. 

There is no statistical difference between genotypes 68 and 64 for all variables analyzed. 

Genotype 38, on the other hand, presented lower LAI in relation to the others. 
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Figure 4. Normalized Difference Vegetation Index (NDVI), on the left, and Border Red Normalized Difference 

Vegetation Index (NDRE), on the right, at the end of the summer squash production cycle.  

 

 
Figure 5. Summer squash genotypes 38, 68 and 64 in Block 1. From top to bottom, RGB photo and measurement 

of Normalized Difference Vegetation Index (NDVI) and Border Red Normalized Difference Vegetation Index 

(NDRE). 
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DISCUSSION 
 

Variables such as plant height and canopy cover, measured using aerial images to 
monitor crop growth can be used to estimate final yield. As an example, Bendig et al. 

(2014) measured plant height of barley from the crop surface model generated by RGB 
images, used to develop regression models to predict biomass and the best model obtained a 

relative error of 54.04%.  
A study by Zhao et al. (2007), in cotton, showed that NDVI has a high linear 

correlation (R
2
> 0.6) with leaf area index (LAI). As NDVI and LAI correlate with canopy 

coverage, a linear relationship was found between NDVI and canopy coverage. The 
coefficient of determination (R

2
) was low (0.33 to 0.48) because data collection was 

performed at the late vegetative stage, where the correlation between LAI and NDVI was 

depreciated, the same fact was observed in the present study. Another reason for the low R
2
 

may be due to the late planting that caused cotton plants to grow differently from normal 

growth. The linear relationship became weak after the fully closed canopy due to leaf 
defoliation. 

In our study the yield variable had a high positive correlation with the number of 

fruits per plant, a positive correlation with NDVI and NDRE. In relation to precocity, the 
correlation was negative, demonstrating that early cycles are related to lowers yields in 
summer squash. SPAD and leaf temperature indexes showed low correlations with 

Production per plant. Regarding the number of fruits showed positive correlations with 
SPAD, NDVI and NDRE. Leaf temperature was correlated with SPAD index, but it had low 

correlations with the other variables (Table 4). 
Porto et al. (2011), in summer squash, found high correlations of R

2
 = 0.96 (p 

<0.001) between SPAD index and total chlorophyll content, R
2
 = 0.93 (p <0.001) between 

SPAD index and total N content, and R
2
 = 0.96 (p <0.001) between total chlorophyll 

content and total N content. These results indicate the possibility of using the portable meter 
SPAD-502 in the indirect evaluation of the total chlorophyll content and in the 

characterization of the N state in the summer squash crop, consequently the yield. However, 
in the present study the correlations of SPAD and production were low (0.19). 

This study demonstrated the usefulness of multispectral aerial images to estimate 

leaf area index. By analyzing the infrared spectrum image obtained in the first flight, in full 
vegetative development and production, differences in vegetative vigor could be observed 

between the evaluated genotypes (Figure 3). 
Through the NDVI index it was possible to separate the plants in relation to the soil 

bottom (Red Latosol). This fact was also observed by Díaz-Varela et al. (2015), in which 

NDVI could be used to separate the crown of olive trees (Olea europaea L.) from the 
ground floor, using aerial images. Current methods for estimating leaf area index (LAI) 
involve destructive sampling and are not practical in breeding programs. Drone and 

proximal sensor technologies open new opportunities to evaluate these features several 
times in large trials with small plots (Potgieter et al., 2017). 

The screening process may require great human effort, in addition to the fact that 
the evaluation of some variables in certain environments limits the yield of this process. 
This is described by Furbank and Tester (2011) as one of the bottlenecks of the phenotyping 

process. In particular, this process is time consuming and as such quite expensive. The use 
of image evaluation is a great tool to circumvent these barriers because they are 
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noninvasive, fast and with high correlation to plant anatomical, physiological and 
biochemical characteristics (Walter et al., 2015). 

CONCLUSIONS 
 

The summer squash germplasm bank was found to have considerable genetic 
diversity among the genotypes, allowing good efficiency in the validation of the image 
phenotyping technique. Genotypes Abobrinha 11#1 (8), Abobrinha 78#1 (39), Abobrinha 

85#1 (42), UFU-E (64), UFU-B (65), UFU-C (66), PX13067051 (67), UFU-G (68) stood 
out for yield, fruit number, precocity and high leaf area index, NDVI and NDRE values. 
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